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Analysis of Time Response of Lossy
Multiconductor Transmission Line Networks

ANTONIJE R. DJORDJEVIC AND TAPAN K. SARKAR, SENIOR MEMBER, IEEE

Abstract —Systems are considered consisting of an arbitrary number of
multiconductor transmission lines joined and terminated by arbitrary linear
networks. The lines are assumed to be lossy, with frequency-dependent
parameters. The system is analyzed in the frequency domain, and the
inverse Fourier transform is used to obtain the time-domain response.

I. INTRODUCTION

ULTICONDUCTOR transmission lines are fre-

quently encountered in digital computers, com-
munication systems, and power distribution systems. Quite
often, systems are formed of such lines, which are mutually
interconnected (e.g., digital computer buses with branch-
ings). Due to the interconnections and to improper line
terminations, the signals propagating in such systems can
suffer multiple reflections, which might cause problems,
especially in digital circuits. In addition, the dispersive
propagation along the lines, which is caused by line losses
as well as by the inhomogeneous dielectric in which the
lines are embedded, introduces signal distortions and cross
talk between the line conductors.

Although the analysis of such systems seems to be of
great practical importance, especially in the design of fast
digital circuits, there seem to be no references in the open
literature treating this problem comprehensively. The
present paper is aimed at partly filling this gap.

In this paper a method is developed for analyzing the
time-domain response of systems consisting of an arbitrary
number of multiconductor transmission lines which are
mutually interconnected and terminated by arbitrary linear
networks, The lines can be lossy and they can have
frequency-dependent parameters. The system can be ex-
cited by an arbitrary number of generators, which are
located in the terminal and interconnecting networks. An
example of such a system is sketched in Fig. 1. The
time-domain waveforms of the generators are first Fourier
transformed. Next, the analysis of the system is performed
in the frequency domain at a set of discrete frequencies.
Finally, the inverse fast Fourier transform is used to
obtain the time-domain waveforms.

The transmission line analysis is based on the modal
theory in the frequency domain, which can be found in
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Fig. 1. Sketch of a system with three multiconductor transmission lines.

many references, e.g. [1]. Each of the lines is assumed to be
uniform along its length, and it is described in terms of the
circuit-theory parameters. At each frequency, the line ei-
genrnodes are evaluated and they are combined with the
equations describing the terminal and interconnecting net-
works to obtain the response of the whole system. The
basic relations for multiconductor transmission lines which
are relevant to the present analysis are summarized in
Section 1I.

The transmission lines are assumed to be mutually in-
terconnected and terminated in an arbitrary manner by
linear multiport networks. These networks can, for exam-
ple, contain equivalent excess capacitances and induc-
tances describing line junctions and ends. Generators
exciting the system can be included in any of the intercon-
necting and terminal networks. The terminal and intercon-
necting networks can conveniently be described in the
frequency domain by two square matrices and a column
matrix (vector), as shown in Section III.

The equations describing the transmission lines and
those describing the terminal and interconnecting net-
works form a system of simultaneous linear equations.
This system can be solved in the frequency domain to
obtain the voltages at the transmission line ends. By apply-
ing the inverse Fourier transform, the voltages in the time
domain are obtained, which represent the final solution.
The combined treatment of the transmission lines and of
the terminal and interconnecting networks is described in
Section IV.

In Section V, some numerical examples are shown to
illustrate the application of the present technique. The
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examples include single multiconductor transmission lines,
cascaded lines, branchings, and loops formed by transmis-
sion lines.

II. TREATMENT OF MULTICONDUCTOR
TRANSMISSION LINES

In this section we are going to briefly summarize the
main equations which are necessary to analyze lossy multi-
conductor transmission lines, starting from the line
circuit-theory parameters. The derivation of these equa-
tions can be found, for example, in [1].

Let us consider only one transmission line at a time
(Fig. 2). Let it have N signal conductors, and a ground
(reference) conductor. (We assume that the ground is at a
zero potential for all multiconductor transmission lines of
our system.) The transmission line is assumed to be of an
arbitrary cross section, which is uniform along the line
length,

Let us introduce a local x axis along the length of our
transmission line, with x = 0 corresponding to the first end
of the line and x = D corresponding to the second end of
the line. We assume that we know the following line
parameters: the matrix [ L] of inductances per unit length,
the matrix [R] of resistances per unit length, the matrix
[B] of electrostatic induction coefficients per unit length,
and the matrix [G] of conductances per unit length. All
these matrices are of dimensions N X N. (We are not going
to discuss the evaluation of these quasi-TEM matrices, and
the reader can refer, for example, to [2]-[5] for numerical
methods for the computation of the matrices [L], [B], [R],
and [G].) The line can be described by the telegrapher
equations in the frequency domain:

N 210001

)

(1)
2

where [V(x)] is the vector of complex line voltages, [1(x)]
is the vector of complex line currents,
[Z']=[R]+ jw[L] )
[Y]=[G]+ jo[B] (4)
and w is the angular frequency. From the telegrapher

equations,-the wave equation for the line voltage vector
can be derived:

VN 2o, ®)

Next, we try to find a solution to the wave equation (5)
which is a wave whose propagation along the line is
described by the multiplicative factor exp(+ v,,x), i.€.,

[rm(x)] = [V5"] exp (£ %) (6)
[17(x)] = [15"] exp (£ ¥, x) (7)
where [V4"] and [I{"] are vectors of complex constants.

Such waves are referred to as the eigenmodes. The minus
sign in (7) corresponds to a mode traveling in the direction

0<x<D.
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Fig. 2. Sketch of a multiconductor transmission line.

of the x axis (the incident wave), and the plus sign
corresponds to a mode traveling in the opposite direction
(the reflected wave).

From the wave equation (5), we now obtain

{(mlul-[z1v]} V] =0 (8)
where [U] is an identity matrix. Equation (8) has nontrivial
solutions for the vector {Vj"] if

det{v2[U]-[Z1[¥]} =o0. ©)
The solutions to (9) are N complex numbers v. (m=
1,- -+, N), which are referred to as the eigenvalues. Each
eigenvalue has its corresponding eigenvector [V"], which
is a solution to (8) and is unique to a multiplicative
constant. By taking square roots of the eigenvalues, the
modal propagation coefficients v,, are evaluated.
Next, we define the modal voltage matrix [§,], the
columns of which are the vectors [V"], and the modal

current matrix [S;], the columns of which are the vectors
[1§"] (m=1,-- -, N). These modal matrices are related as

[s:1=[Z17'[s,][T] (10)
where
[T]=diag{vi, -, 7w} (11)

In the general case, all the eigenmodes, propagating in
both directions, will be excited on the transmission line.
Let us introduce complex intensities of the incident and
reflected modes at x=0, G5 and G (m=1,---,N).
Then the voltages of the mth eigenmode at x = 0 are given
as (G2 + G/)[Vg"), while the currents can be obtained as
(G — G/ 1], where the vectors [V"] and [[§"] corre-
spond to incident waves.

Transmission line voltages and currents at any position
x along the line can be written as sums of the incident and
reflected waves:

[V(0)] = [V,(x)+V(x)] =[S, ]{[G.(x)] +[G(x)]}
(12)

[1(x)] = [L:(x) = L()] = [S,1{[G.(x)] - [Gr(x)](}

13)

where ‘
[G,(x)] = [E(x)][G,]
[G,(x)] = [E(x)] TG0l

(14)
(15)
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[G,,] and [G,,] are complex vectors containing modal
intensities at x =0, and

[E(x)] = diag(exp(—vix), - -,exp(— vyx)). (16)
The characteristic impedance matrix [Z,] of the line is
defined by the relations

Vol =121[L(x)] V()] = -[2][1(x)]

a7)

and it can be evaluated as

_ - —~1 ,
[z]=[s,1s,] " =[5, 1[F]7'[s,] ' [2]. (18)
The inverse of [Z,] is the characteristic admittance matrix
[Y.]

If we introduce [E,] = [E(D)] and [G,p] =[Ep] '[G,o),
we obtain voltages and currents at both transmission line
ends in terms of the incident modal intensities at x =0
and the reflected modal intensities at x = D:

[V(0)] =[5, 1([G.o] + [ E5][Gp))

[1(0)] = [V, )([G.o] - [En1[G.p])
[V(D)] =[S, J([Epl[Gio]+1Gp]) (21)

[1(0)] = [V.][S, ) Epl[Go]l - [Gp]).  (22)

Note that the reference directions for the line currents
coincide with the direction of the x axis (as shown in Fig.
2).

From the above equations, it can be seen that the state
at the transmission line ends is uniquely determined by 2N
quantities, i.c., by the elements of the modal intensity
vectors [G,,] and [G,,]. The objective of our analysis will
be to find these vectors for each transmission line (at a set
of discrete frequencies) by a combined treatment of the
transmission lines and the terminal and interconnecting
networks.

(19)
(20)

III. TREATMENT OF TERMINAL AND
INTERCONNECTING NETWORKS

We assume that the networks terminating and intercon-
necting the transmission lines of our system are arbitrary
multiport linear networks, some of which contain genera-
tors. Also, we assume that there are no dependent genera-
tors in one network which depend on the state in another
network; i.e., we assume that these networks are coupled
only through the transmission lines. (If there is another
coupling between two networks, we simply combine the
two networks into one network.)

One or more transmission lines are connected to each
terminal or interconnecting network. We impose no re-
strictions on the way the transmission lines are connected,
except that each end of a line is entirely connected to one
network. One transmission line can be connected at both
ends to the same network, two or more lines can link two
networks, the lines can form loops, etc. The transmission
lines can be terminated in an arbitrary manner. For exam-
ple, a line conductor can be short-circuited to the ground,
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Fig. 3. Sketch of an interconnecting network.

it can be left opened, it can be terminated in an arbitrary
impedance, it can be driven by a generator, or it can be
connected to a conductor belonging to the same or to
another transmission line.

Nodes of a terminal or interconnecting network can be
divided into two groups. The first group comprises the
nodes at which the transmission lines are connected. These
nodes we shall refer to as the external nodes. The second
group comprises all the other nodes, which we shall refer
to as the internal nodes. We assume that the networks have
the same common ground as the transmission lines. The
number of external nodes for a network must be equal to
the total number of signal conductors of all the transmis-
sion lines connected to that network. Let this number be
M. Let us introduce the vector [V] of voltages between the
network external nodes and ground, and the vector [/] of
currents leaving the network through the external nodes
(Fig. 3). The network being linear, there exists a matrix
relation between these two vectors which has the general
form

[PIVI+[2]1]=[E] (23)

where [P] and [Q] are square matrices of dimensions
M x M, and [E] is a column matrix of dimensions M X 1.
Equation (23) includes both Z-parameter and Y-parameter
representations of the network. In the case of the Z-
parameter representation, we have [P]=[U], [Q]=[Z],
and [E] =[V,], where [U] is an identity matrix, [Z] is the
matrix of the Z parameters, and {V}] is the vector of the
open-circuit voltages. This is, essentially, Thévenin’s
equivalent representation of the network. In the case of the
Y-parameter representation, we have [P]=[Y], [@]=[U],
and [E]=[1,], where [Y] is the matrix of the Y parame-
ters, and [I;] is the vector of the short-circuit currents.
This is Norton’s equivalent representation. However, in the
general case, the elements of the matrices [P], [Q], and [ E]
need not be of the same kind, and we have a hybrid
representation of the network.

The general equation (23) for the terminal and intercon-
necting networks can easily describe any kind of a net-
work, unlike the Z parameters and Y parameters. Namely,
the Z parameters cannot be defined in the presence of
open circuits, while the Y parameters cannot be defined
for short circuits.

For networks which contain no internal nodes, (23) can
easily be obtained by writing down the nodal equations. In
these equations, the currents leaving the network through
the external nodes have to be included, and the nodal
voltages coincide with the elements of the vector {V]. For
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networks which do not have internal loops (i.e., closed
paths along the branches which completely lie within the
network), (23) can be obtained from the mesh equations,
in which the voltages between the external nodes and the
ground are involved. In that case, the mesh currents coin-
cide (within a sign) with the elements of the vector [1].

Some examples of the matrices [P], [Q], and [E] are
given in Section V.

IV. CoMBINED TREATMENT OF TRANSMISSION
LINES AND TERMINAL AND INTERCONNECTING
NETWORKS

Once we know the equivalent representation of the
terminal and interconnecting networks, we have to com-
bine these equations with the equations describing the
transmission lines. In order to facilitate the work, it is
convenient to order the M external nodes of each network
so that the first N, nodes belong to the transmission line
#1 connected to that network, the next N, nodes belong
to the line #2 connected to that network, etc. Note that
the network voltages coincide with the corresponding volt-
ages of the transmission line. However, the network cur-
rents are equal to the transmission line currents only if the
network is connected to the first end of the line. If the
network is connected to the second end of the line, then
the network currents are the negative of the corresponding
transmission line currents. This is due to the adopted
reference directions for current, as shown in Figs. 2 and 3.

Our objective in this paper is to solve for the voltages at
the transmission line ends. To that purpose, we can replace
the first N, elements of the network voltage vector [V]
with the corresponding elements of the voltage vector of
the first transmission line connected to the network, then
replace the following N, elements with the corresponding
elements of the voltage vector for the second line, etc.
Then, we repeat the same procedure for the network
current vector [I], substituting for its elements the corre-
sponding elements of the current matrices of the transmis-
sion lines, taking into account a possible change of the
sign. In other words, we replace blocks of the network
vectors [V'] and [/] with the appropriate transmission line
vectors [V'] and [I]. Next, we substitute transmission line
voltages and currents from (19)-(22) in terms of the line
modal intensities [G,y] and [G,;]. Finally, we plug the
neiwork vectors [V'] and [I] into (23). This equation now
represents M linear equations relating the modal intensi-
ties of the lines connected to the network.

If we write such equations for all the terminal and
interconnecting networks, we actually obtain a definite
system of linear equations in [G,y] and [G,,] for all the
lines. The number of unknowns in this system equals twice
the total number of conductors of all the lines. Equiv-
alently, it equals the total number of external nodes for all
the terminal and interconnecting networks.

If we solve this system, we obtain the line modal intensi-
ties [G,,] and [G,]. These intensities known, we can easily
compute the voltages at the line ends, from (19) and (21),
which was precisely our objective. Also, we can evaluate

NETWORK #1 NETWORK #2
LINE #1
e~ 4 500 [w v31 1000
1000 (v, v,{ 1000

Fig. 4. Sketch of a transmission line with terminal networks.
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Generator electromotive force.

the currents at the line ends, from (20) and (22), or
voltages and currents at any cross section along any line.

A particular problem can arise if the frequency is zero.
If the lines are lossless, or at least one of the lines matrices
[R] or [G] is zero, the eigenvalue equation (9) has no
solution, because the product [Z’'][Y’] = [0]. Although spe-
cial equations for the system could be constructed in such
a case, this would be extremely complicated because many
transmission lines can be present in the system, and the
terminal and interconnecting networks can have elements
whose immittances become singular at the zero frequency
(e.g., capacitors and inductors). In order to avoid this
problem, instead of analyzing the system at a zero
frequency, we can analyze the system at a very low
frequency, and treat the results as if they were for the zero
frequency. Since we utilize the fast Fourier transform to
relate the time-domain data to the frequency-domain data,
we involve only discrete frequencies. In that case, a “ very
low frequency” could be, for example, 1/100 of the dis-
tance between adjacent samples in the frequency domain.

V. NUMERICAL EXAMPLES

As the first example, we consider a single multiconduc-
tor transmission line, with N =2. One line conductor is
driven by a 50-Q generator at one end, while all the other
line ports are connected to the ground by 100- resistors.
The system is sketched in Fig. 4. Note that in Fig. 4 the
ground conductor is not shown, in order to simplify the
scheme. We first assume the line to be lossless and 0.3048
m long and the line parameters to be

_[4946 633
[L]_[ 63.3 494.6]“H/m

[ 628 -49
[B]_[—4.9 62.8]pF/m'
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Fig. 6. Voltages for the system of Fig. 4 (lossless case): (a) — v, and
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The electromotive force of the generator driving the line is
shown in Fig. 5. The same emf is also used in all the other
examples in this paper.

In this case there are two terminal networks and only
one line. If we take a Z-parameter representation of the
terminal networks, we obtain the following matrices de-
scribing the terminal networks:

[P1]=[(1) ?] [Ql]z[sg 108]Q [Ed:[EE)f)}

pd=[1 ] tea=[" Sl (z1-[Y]

where E(f) is the Fourier transform of the emf shown in
Fig. 5. The voltages at the line ends, obtained by the
present method. are shown in Fig. 6. As in all the other
examples presented below, the time interval for the fast
Fourier transform was taken to be Af=0.25 ns. The
number of samples in the time domain for this example
was 64. (All the examples presented in this paper were run
on a Digital Professional 350 personal computer.) The
ripple in the plotted results, which is particularly visible in
the voltage at the second end of the parasitic line, is caused
by a relatively small number of samples used in the
analysis.
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Fig. 8. Sketch of two cascaded transmission lines.

Next, we consider the same case as shown in Fig. 4, but
we assume the line to be lossy. The line resistance matrix is
assumed to vary in proportion to the square root of the
frequency, while the conductance matrix is assumed to be
independent of the frequency. The resistance matrix at 1
MHz and the conductance matrix are given by

71=[53, 0% a/m
e1=[ 55 o s

The resulting voltage waveforms are shown in Fig. 7.

As the second system, we consider the two transmission
lines sketched in Fig. 8, one having two signal conductors,
and the other one signal conductor. Both lines are assumed
to be lossless. The matrices [L] and [B] for the first line
are the same as for the previous example. (The diagonal
elements of the characteristic impedance matrix are 89 £,
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and the off-diagonal elements are 9.2 .) For the second
line, it was assumed that L=2 pH/m and B =15 pF/m
(i.e., the characteristic impedance of the line is 365 ).
Both lines are of the same length, 0.3048 m. The matrices
describing the interconnecting network are

1 -1 0 0 —-Z 0
[P]=]l0 o 1| [Q.]=]|0 0 0
Y 0 0 1 0 1

0
[Ez] = [0]
0

The matrices describing the first terminal network are the
same as for the system of Fig. 4, while for the second
terminal network we have

[P]=[1] [@s]=[50]Q [E;]=[0].

First, it was assumed that Z =100 & and Y = 0, i.c., that
there is a 100-Q2 resistor connected between the driven
conductor of the first line and the second line. The result-
ing voltages are shown in Fig. 9, where it is easy to see how
the excited wave propagates down the first line, how it gets
reflected at the interconnection with the second line due to
a high mismatch (the characteristic impedance of the sec-
ond line being about four times greater than the diagonal
element of the characteristic impedance matrix of the first
line), and how the mismatch at the end of the second line
affects the voltage at the interconnection between the two
lines.

In the second case, a capacitance was assumed to be
connected in parallel with the junction between the two
lines, i.e., Z=0 and Y= jwC, with C=3.18 pF. (This
capacitance could represent the excess capacitance of the
junction.) The resulting waveforms are shown in Fig. 10.
The waveforms at the driven conductor are rounded due to
the integrating effect of the capacitor.

The third system considered consists of the three trans-
mission lines, of unequal lengths, sketched in Fig. 11. The
first line length is 0.3048 m, the second is 0.4572 m, and
the third is 0.6096 m. This system can represent a cable or
bus branching. All three lines are lossless and they have
the same characteristics as the line of Fig. 4. The matrices
describing the first terminal network are the same as
before; for network #2 we have

1 0 -1 0 0 0
1 0 0 0 -1 0
1o 1 0 -1 0 0
[P.)= 0 1 0 0 0 -1
0 0 0 0 0 0
0 0 0 0 0 0
[0 0 0 0 0 O 0
0 0 0 0 0 0 0
o o 0o 0 0 o0 _10
1 01 01 0 0
01 0 1 0 1 0

NETWORK # 1 NETWORK#2 NETWORK #3
LINE #1 LINE #2
e E . 5001 vy V3 Vg Vg
1000 |v, A Vg vg
ACT A
LINE # 3
i vz
2000{ i’zoon
NETWORK #4
Fig. 11. Sketch of a transmission line branching.

while for networks #3 and #4 we have
1 0 200 0
[P3]=[P4]=[O 1} [Q3]=[Q4]=[ 0 200]9

CSREEHE

The voltage waveforms for this system are shown in Fig.
12. In this figure one can see that the second and third
lines initially represent a mismatch to the first line (as if
the first line were terminated in one half of its characteris-
tic impedance matrix). Ultimately, however, it becomes
well matched, because of the 200-Q resistors, which, for a
late time, can be considered to be connected in parallel.
Note that a T junction of three conductors cannot be made
well matched at more than one port (unless the junction is
a resistive network), which might cause problems in any
kind of line branching.

The final example is a three-line system, shown in Fig.
13. The two lines with two signal conductors have the same
characteristics as the line of Fig. 4, while the line with one
signal conductor has L = 494.6 nH/m and B = 62.8 pF /m.
All three lines are of the same length, 0.3048 m. Again, the
first network is the same as the one in Fig. 5, while for the
other two networks we have

1

1 0 -1 0 0

1 0 0 0 -1
[R]=|0 1 0 -1 0

0 0 0 0 0

[0 0 0 0 0

0 0 0 0 O 0

0 0 0 0 O 0
[@,]=|0 0 0 0 o [E]=]|0

1 01 0 1 0

(0 1 0 1 0 0

[1 0 0 1000 0 O
[Pl=|0 1 —1} [Q3]=[ 0 0 o}

10 0 0 1 0 1

0
[E;]l=10 |

X
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The voltages at the transmission line ends are plotted in
Fig. 14. The wave first propagates down the first line (the
dominant voltage is at the driven conductor); then it gets
separated along the upper conductor of the second line
and along the third line. The voltages along these two
paths are almost the same (except for a small influence of
the lower conductor of the second line), and they arrive
almost coincidently to the third network. The voltage at
the upper conductor of the second line practically does not
get reflected, because it sees a well-matched termination,
while the third line excites the lower conductor of the
second line. This excited wave travels back along the
second line and excites the lower conductor of the first
line. Again, this wave sees a reasonably good termination
at the first network, so that the system response dies out
pretty fast.

VI

A computer-oriented technique for evaluating the time-
domain response of a system consisting of a number of
arbitrarily interconnected lossy multiconductor transmis-

CONCLUSIONS

sion lines was presented. The technique can be applied
even on personal computers to obtain waveforms propa-
gated along systems with line branchings and loops, which
can be of particular value in the design of printed-circuit
interconnections of fast digital computers. A few examples
were presented illustrating this technique and demonstrat-
ing wave reflections, distortions, and cross talk.
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