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Analysis of Time Response of Lossy
Multiconductor Transmission Line Networks

ANTONIJE R. DJORDJEVIC AND TAPAN K. SARKAR, SENIOR MEMBER, IEEE

Abstract —Systems are considered consisting of an arbitrary number of

multiconductor transmission lines joined and terminated by arbitrary linear

networks. The fines are assumed to be Iossy, with frequency-dependent

parameters. The system is analyzed in the frequency domain, and the

inverse Fourier transform is used to obtain tbe time-domain response.

I. INTRODUCTION

M ULTICONDUCTOR transmission lines are fre-

quently encountered in digital computers, com-

munication systems, and power distribution systems. Quite

often, systems are formed of such lines, which are mutually

interconnected (e.g., digital computer buses with branch-

ing). Due to the interconnections and to improper line

terminations, the signals propagating in such systems can

suffer multiple reflections, which might cause problems,

especially in digital circuits. In addition, the dispersive

propagation along the lines, which is caused by line losses

as well as by the inhomogeneous dielectric in which the

lines are embedded, introduces signal distortions and cross

talk between the line conductors.
Although the analysis of such systems seems to be of

great practical importance, especially in the design of fast

digital circuits, there seem to be no references in the open

literature treating this problem comprehensively. The

present paper is aimed at partly filling this gap.

In this paper a method is developed for analyzing the

time-domain response of systems consisting of an arbitrary

number of multiconductor transmission lines which are

mutually interconnected and terminated by arbitrary linear

networks. The lines can be lossy and they can have

frequency-dependent parameters. The system can be ex-

cited by an arbitrary number of generators, which are

located in the terminal and interconnecting networks. An

example of such a system is sketched in Fig. 1. The

time-domain waveforms of the generators are first Fourier

transformed. Next, the analysis of the system is performed

in the frequency domain at a set of discrete frequencies.
Finally, the inverse fast Fourier transform is used to

obtain the time-domain waveforms.

The transmission line analysis is based on the modal

theory in the frequency domain, which can be found in
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Fig. 1. Sketch of a system with three multiconductor transmission lines.

many references, e.g. [1]. Each of the lines is assumed to be

uniform along its length, and it is described in terms of the

circuit-theory parameters. At each frequency, the line ei-

genrnodes are evaluated and they are combined with the

equations describing the terminal and interconnecting net-

works to obtain the response of the whole system. The

basic relations for multiconductor transmission lines which

are relevant to the present analysis are summarized in

Section H.

The transmission lines are assumed to be mutually in-

terconnected and terminated in an arbitrary manner by

linear multiport networks. These networks can, for exam-

ple, contain equivalent excess capacitances and induc-

tances describing line junctions and ends. Generators

exciting the system can be included in any of the intercon-

necting and terminal networks. The terminal and intercon-

necting networks can conveniently be described in the

frequency domain by two square matrices and a column

matrix (vector), as shown in Section III.

The equations describing the transmission lines and

those describing the terminal and interconnecting net-

worlks form a system of simultaneous linear equations.

This system can be solved in the frequency domain to

obtalin the voltages at the transmission line ends. By apply-

ing the inverse Fourier transform, the voltages in the time

domain are obtained, which represent the final solution.

The combined treatment of the transmission lines and of

the terminal and interconnecting networks is described in

Section IV.

In Section V, some numerical examples are shown to

illustrate the application of the present technique. The
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examples include single multiconductor transmission lines,

cascaded lines, branching, and loops formed by transmis-

sion lines.

II. TWATMENT OF MULTICONDUCTOR

TRANSMISSION LINES

In this section we are going to briefly summarize the

main equations which are necessary to analyze lossy multi-

conductor transmission lines, starting from the line

circuit-theory parameters. The derivation of these equa-

tions can be found, for example, in [1].

Let us consider only one transmission line at a time

(Fig. 2). Let it have N signal conductors, and a ground

(reference) conductor. (We assume that the ground is at a

zero potential for all multiconductor transmission lines of

our system.) The transmission line is assumed to be of an

arbitrary cross section, which is uniform along the line

length.

Let us introduce a local x axis along the length of our

transmission line, with x = O corresponding to the first end

of the line and x = D corresponding to the second end of

the line. We assume that we know the following line

parameters: the matrix [L] of inductances per unit length,

the matrix [R] of resistances per unit length, the matrix

[B] of electrostatic induction coefficients per unit length,

and the matrix [G] of conductance per unit length. All

these matrices are of dimensions N x N. (We are not going

to discuss the evaluation of these quasi-TEM matrices, qnd

the reader can refer, for example, to [2]–[5] for numerical

methods for the computation of the matrices [L], [B], [R],

and [G].) The line can be described by the telegrapher

equations in the frequency domain:

d[V(x)]

dx
=-[z’][I(x)]

d[I(x)]

dx
=-[ Y’][v(x)]

(1)

(2)

where [V(x)] is the vector of complex line voltages, [1(x)]

is the vector of complex line currents,

[Z’] =[R]+jiJ[L] (3)

[Y’] =[G]+ju[l?] (4)

and ~ is the angular frequency. From the telegrapher

equation~ the wave equation for the line voltage vector

can be derived:

d2[V(x]]

dx 2
=[Z’][Y’] [V(X)], O<X<D. (5)

Next, we try to find a solution to the wave equation (5)

which is a wave whose propagation along the line is

described by the multiplicative factor exp ( + y~x), i.e.,

[Vffl(x)] = [Vo~]exp(*y~x) (6)

[Ire(x)] = [l;] exp(*ymx) (7)

where [ Vom] and [18] are vectors of complex constants.

Such waves are referred to as the eigenmodes. The minus

sign in (7) corresponds to a mode traveling in the direction

11(o) i, (x) i, (D)
*

Vi(o) v,(x) VI(D)

Iz (o) I* (z) IZ(D)

———.-- ————. - —----- —----

IN(0) IN(X) iN(D)

0
0 Dx

Fig. 2. Sketchof a multiconductor transmksion line.

of the x axis (the incident wave), ,and the plus sign

corresponds to a mode traveling in the opposite direction

(the reflected wave).

From the wave equation (5), we now obtain

{Y3ul-[z’][Y’]} [v3”q =0 (8)

where [U] is an identity matrix. Equation (8) has nontrivial

solutions for the vector [ Vom] if

det{yj[u]-[z’][ y’]} =0. (9)

The solutions to (9) are N complex numbers y: (m=

1,. . . , N), which are referred to as the eigenvalues. Each

eigenvalue has its corresponding eigenvector [ Vom], which

is a solution to (8) and is unique to a multiplicative

constant. By taking square roots of the eigenvalues, the

modal propagation coefficients y~ are evaluated.

Next, we define the modal voltage matrix [Sy], the

columns of which are the vectors [ VOM], and the modal

current matrix [ Sr], the columns of which are the vectors

[1~] (nZ=I,. ..,:, N). These modal matrices are related as

‘“’ [s,] = [z’] -’[sV][r] (lo)

wkre

[17] =diag{yl, ”.”, y~}. (11)

In the general case, all the eigenmodes, propagating in

both directions, will be excited on the transmission line.

Let us introduce complex intensities of the incident and

reflected modes at x = O, G,% and G,! (m =1,. .0, N).

Then the voltages of the m th eigenmode at x = O are given

as (G,~ + G,! )[ Vo~J while the currents can be obtained as

(Gfi – Gfl)[l&], where the vectors [Voml and [~(’1 wre-

spond to incident waves.

Transmission line voltages and currents at any position

x along the line can be written as sums of the incident and

reflected waves:

[v(x)] = [K(x) +L(x)] = [$]{ [G,(x)] +.[GAx)]}
(12)

[~(x)l = [zi(x)-~r(x)] = [L$I]{[Gz(x)] -[ Gr(x)]}
(13)

where

[G,(x)] = [E(x) ][GIO] (14)

[G,(x)] = [E(x) ]-’[G,O]. (15)
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[G,o] and [Gro] are complex vectors containing mod~

intensities at x=O, and

[E(x) ]=diag(exp(- ylx), ”””, exp(-yjvx)). (16)

The characteristic impedance matrix [ZC] of the line is

defined by the relations

[~(x)] = [ZC][I,(X)] [~(x)] = -[ ZC][I,(X)]

(17)

and it can be evaluated as

[Zc] = [Sv][s,]-’ = [SV][L’-’ISVl[Z[ ]’]. (18)

The inverse of [Z,] is the characteristic admittance matrix

[Yc].

If we introduce [ED] = [E(D)] and [G,D] = [EDI-l[G,oI,

we obtain voltages and currents at both transmission line

ends in terms of the incident modal intensities at x = O

and the reflected modal intensities at x = D:

[P’(o)] = [SV]([GIO]+ [E~][Gr~]) (19)

[I(o)] = [YC][SV]([G,O]- [ED][G,D]) (20)

[~(~)] = [~~]([ED][G,o]+ [G]) (21)

[I(o)] = [Yc][sV]([E~][G, o]-[Gr~]). (22)

Note that the reference directions for the line currents

coincide with the direction of the x axis (as shown in Fig.

2).

From the above equations, it can be seen that the state

at the transmission line ends is uniquely determined by 2 N

quantities, i.e., by the elements of the modal intensity

vectors [G,. ] and [G,D]. The objective of our analysis will

be to find these vectors for each transmission line (at a set

of discrete frequencies) by a combined treatment of the

transmission lines and the terminal and interconnecting

networks.

III. TREATMENT OF TERMINAL AND

INTERCONNECTING NETWORKS

We assume that the networks terminating and intercon-

necting the transmission lines of our system are arbitrary

multiport linear networks, some of which contain genera-

tors. Also, we assume that there are no dependent genera-

tors in one network which depend on the state in another

network; i.e., we assume that these networks are coupled

only through the transmission lines. (If there is another

coupling between two networks, we simply combine the
two networks into one network.)

One or more transmission lines are connected to each

terminal or interconnecting network. We impose no re-

strictions on the way the transmission lines are connected,

except that each end of a line is entirely connected to one

network. One transmission line can be connected at both

ends to the same network, two or more lines can link two

networks, the lines can form loops, etc. The transmission

lines can be terminated in an arbitrary manner. For exam-

ple, a line conductor can be short-circuited to the ground,

VI VL
0+( b AA *14

RI RZ 1 V5 .-i 5
z

12+ & ‘6 16

w, iy

i3+ >“3 R3- >
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Fig. 3. Sketchof an interconnecting network.

it can be left opened, it can be terminated in an arbitrary

impedance, it can be driven by a generator, or it can be

connected to a conductor belonging to the same or to

another transmission line.

Nodes of a terminal or interconnecting network can be

divided into two groups. The first group comprises the

nodes at which the transmission lines are connected. These

nodes we shall refer to as the external nodes. The second

groulp comprises all the other nodes, which we shall refer
to as the internal nodes. We assume that the networks have

the same common ground as the transmission lines. The

numlber of external nodes for a network must be equal to

the total number of signal conductors of all the transmis-

sion lines connected to that network. Let this number be

M. Let us introduce the vector [V] of voltages between the

network external nodes and ground, and the vector [1] of

currents leaving the network through the external nodes

(Fig. 3). The network being linear, there exists a matrix

relation between these two vectors which has the general

form

[P][V]+[Q][I]= [E] (23)

where [P] and [Q] are square matrices of dimensions

M x M, and [E] is a column matrix of dimensions M X 1.

Equation (23) includes both Z-parameter and Y-parameter

representations of the network. In the case of the Z-

parameter representation, we have [P]= [U], [Q]= [Z],
and [E] = [ Vo], where [U] is an identity matrix, [Z] is the

matrix of the Z parameters, and [ VO] is the vector of the

OpeI1-CirCUit voltages. This is, essentially, Th4venin’s

equivalent representation of the network. In the case of the

Y-pamameter representation, we have [P] = [Y], [Q] = [U],

and [E] = [10], where [Y] is the matrix of the Y parame-

ters, and [10 ] is the vector of the short-circuit currents.

This is Norton’s equivalent representation. However, in the

general case, the elements of the matrices [P], [Q], and [E]

need not be of the same kind, and we have a hybrid

representation of the network.

The general equation (23) for the terminal and intercon-

nect ing networks can easily describe any kind of a net-

work, unlike the Z parameters and Y parameters. Namely,

the Z parameters cannot be defined in the presence of

open circuits, while the Y parameters cannot be defined

for short circuits.

For networks which contain no internal nodes, (23) can

easily be obtained by writing down the nodal equations. In

these equations, the currents leaving the network through

the external nodes have to be included, and the nodal

voltages coincide with the elements of the vector [V]. For
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networks which do not have internal loops (i.e., closed

paths along the branches which completely lie within the

network), (23) can be obtained from the mesh equations,

in which the voltages between the external nodes and the

ground are involved. In that case, the mesh currents coin-

cide (within a sign) with the elements of the vector [1].

Some examples of the matrices [P], [Q], and [E] are

given in Section V.

IV. COMBINED TREATMENT OF TRANSMISSION

LINES AND TERMINAL AND INTERCONNECTING

NETWORKS

Once we know the equivalent representation of the

terminal and interconnecting networks, we have to com-

bine these equations with the equations describing the

transmission lines. In order to facilitate the work, it is

convenient to order the M external nodes of each network

so that the first NI nodes belong to the transmission line

#1 connected to that network, the next Nz nodes belong

to the line #2 connected to that network, etc. Note that

the network voltages coincide with the corresponding volt-

ages of the transmission line. However, the network cur-

rents are equal to the transmission line currents only if the

network is connected to the first end of the line. If the

network is connected to the second end of the line, then

the network currents are the negative of the corresponding

transmission line currents. This is due to the adopted

reference directions for current, as shown in Figs. 2 and 3.

Our objective in this paper is to solve for the voltages at

the transmission line ends. To that purpose, we can replace

the first NI elements of the network voltage vector [V]

with the corresponding elements of the voltage vector of

the first transmission line connected to the network, then

replace the following Nz elements with the corresponding

elements of the voltage vector for the second line, etc.

Then, we repeat the same procedure for the network

current vector [1], substituting for its elements the corre-

sponding elements of the current matrices of the transmis-

sion lines, taking into account a possible change of the

sign. In other words, we replace blocks of the network’

vectors f V] and [1] with the appropriate transmission line
vectors [V] and [Z]. Next, we substitute transmission line

voltages and currents from (19)–(22) in terms of the line

modal intensities [ G,O] and [G,D]. Finally, we plug the

network vectors [V] and [1] into (23). This equation now

represents M linear equations relating the modal intensi-

ties of the lines connected to the network.

If we write such equations for all the terminal and

interconnecting networks, we actually obtain a definite

system of linear equations in [GZO] and [G,D] for all the

lines. The number of unknowns in this system equals twice

the total number of conductors of all the lines. Equiv-

alently, it equals the total number of external nodes for all

the terminal and interconnecting networks.

If we solve this system, we obtain the line modal intensi-

ties [Gio] and [G,D]. These intensities known, we can easilY

compute the voltages at the line ends, from (19) and (21),

which was precisely our objective. Also, we can evaluate

NETWORK#l NETWORK*2
LINE #l

e
I n+

V3 loon
r

loon v~ v~ 100A
I

Fig. 4. sketch of a transmission line with terminaf networks.
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Fig. 5. Generator electromotive force.

the currents at the line ends, from (20) and (22), or

voltages and currents at any cross section along any line.

A particular problem can arise if the frequency is zero.

If the lines are lossless, or at least one of the lines matrices

[R] or [G] is zero7 the eigenvalue equation (9) has no

solution, because the product [ 2’][ Y’] = [0]. Although spe-

cial equations for the system could be constructed in such

a case, this would be extremely complicated because many

transmission lines can be present in the system, and the

terminal and interconnecting networks can have elements

whose immittances become singular at the zero frequency

(e.g., capacitors and inductors). In order to avoid this

problem, instead of analyzing the system at a zero

frequency, we can analyze the” system at a very low

frequency, and treat the results as if they were for the zero

frequency. Since we utilize the fast Fourier transform to

relate the time-domain data to the frequency-domain data,

we involve only discrete frequencies. In that case, a “ very

low frequency” could be, for example, 1/100 of the dis-

tance between adjacent samples in the frequency domain.

V. NUMERICAL 12CAMPLES

As the first example, we consider a single multiconduc-

tor transmission line, with N = 2. One line conductor is

driven by a 50-S? generator at one end, while all the other

line ports are connected to the ground by 1OO-Q resistors.

The system is sketched in Fig. 4. Note that in Fig. 4 the

ground conductor is not shown, in order to simplify the

scheme. We first assume the line to be lossless and 0.3048
m long and the line parameters to be
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Fig. 6. Voltages for the system of Fig. 4 (lossless case): (a) — VI and
—--—v3; (b) — 02 and –--– V4.

The electromotive force of the generator driving the line is

shown in Fig. 5. The same emf is also used in all the other

examples in this paper.

In this case there are two terminal networks and only

one line. If we take a Z-parameter representation of the

terminal networks, we obtain the following matrices de-

scribing the terminal networks:

[~,]= [; ;] [QJ=[5: loo
1 [1

E(f)0 L? [El]= o

[P,] = [; ;] [Qz]= [log loo 1 [100 [E,]= :

where E(~) is the Fourier transform of the emf shown in

Fig. 5. The voltages at the line ends, obtained by the

present method. are shown in Fig. 6. As in all the other

examples presented below, the time interval for the fast

Fourier transform was taken to be At= 0.25 ns. The

number of samples in the time domain for this example

was 64. (All the examples presented in this paper were run

on a Digital Professional 350 personal computer.) The

ripple in the plotted results, which is particularly visible in

the voltage at the second end of the parasitic line, is caused

by a relatively small number of samples used in the

analysis.

1E -3 . w>

40.

20.

. (.>

o ,6. E -s

-m.

t

(b)

Fig. 7. Voltages for the system of Fig. 4 (lossy case): (a) — U1 and
—.-—u3; (b) — U2and -..– ~~,
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Fig. 8. Sketch of two cascaded transmission lines.

Next, we consider the same case as shown in Fig. 4, but

we assume the line to be lossy. The line resistance matrix is

assumed to vary in proportion to the square root of the

frequency, while the conductance matrix is assumed to be

independent of the frequency. The resistance matrix at 1

MHz and the conductance’matrix are given by

The resulting voltage waveforms are shown in Fig. 7.

As the second system, we consider the two transmission

lines sketched in Fig. 8, one having two signal conductors,

and the other one signal conductor. Both lines are assumed

to be lossless. The matrices [L] and [B] for the first line

are the same as for the previous example. (The diagonal

elements of the characteristic impedance matrix are 89 fl,
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Fig. 9. Voltages for the system of Fig. 8 (with a 100-0 series resistor at the junction): (a) — UI, ---- IJ3, —-— us, and — .— V6; (b) — V2.
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Fig. 10. Voltages for the system of Fig. 8 (with a 3.18-pF parallel capacitor at the junction): (a) — u,, –--– us, and —-— U6;(b) — U2.
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and the off-diagonal elements are 9.2 !il.) For the second NETWORK#l NZT woRK#2 NETwoRK#3

line, it was assumed that L = 2 pH/m and B =15 pF/m
LINE#l LINE #2

em + son v, V3 .Vs

(i.e., the characteristic impedance of the line is 365 0). u “

Both lines are of the same length, 0.3048 m. The matrices
loon v? V4 V6

I

describing the interconnecting network are
V9 vlo

‘P2]=[! ‘i H ‘Q2]=I! ‘! !1

LlNE#3

[1

VII ‘flz

[E,]= :.

0 2oon

The matrices describing the first terminal network are the

same as for the system of Fig. 4, while for the second
NETWORK 4+4

Fig, 11. Sketch of a transmission line branching.
terminal network we have

[P,]= [1] [Q,] =[50] 0 [E,]= [0].

First, it was assumed that Z = 100 fl and Y= O, i.e., that

there is a 1OO-!J resistor connected between the driven

conductor of the first line and the second line. The result-

ing voltages are shown in Fig. 9, where it is easy to see how

the excited wave propagates down the first line, how it gets

reflected at the interconnection with the second line due to

a high mismatch (the characteristic impedance of the sec-

ond line being about four times greater than the diagonal

element of the characteristic impedance matrix of the first

line), and how the mismatch at the end of the second line

affects the voltage at the interconnection between the two

lines.

In the second case, a capacitance was assumed to be

connected in parallel with the junction between the two

lines, i.e., Z = O and Y= juC, with C = 3.18 pF. (This

capacitance could represent the excess capacitance of the

junction.) The resulting waveforms are shown in Fig. 10.

The waveforms at the driven conductor are rounded due to

the integrating effect of the capacitor.

The third system considered consists of the three trans-

mission lines, of unequal lengths, sketched in Fig. 11. The

first line length is 0.3048 m, the second is 0.4572 m, and

the third is 0.6096 m. This system can represent a cable or

bus branching. All three lines are lossless and they have

the same characteristics as the line of Fig. 4. The matrices

describing the first terminal network are the same as

before; for network #2 we have

[P,] =

[Q,] =

10 –1 o 0 0
10 0 0 –1 o
01 0 –1 o 0
01 0 0 0 –1
000000
000000 1

000000
000000
000000
000000

!

[E,] =

101010”
010101

0
0

0
0
0
01

while for networks # 3 and #4 we have

[P,] = [p,]= [: : 1] [Q~l=[Q41= [20: ~o: IJ

[%I=[M= [:].

The voltage waveforms for this system are shown in Fig.

12. In this figure one can see that the second and third

lines initially represent a mismatch to the first line (as if

the first line were terminated in one half of its characteris-

tic impedance matrix). Ultimately, however, it becomes

well matched, because of the 200-fl resistors, which, for a

late time, can be considered to be connected in parallel.

Note that a T junction of three conductors cannot be made

well matched at more than one port (unless the junction is

a resistive network), which might cause problems in any

kind of line branching.

The final example is a three-line system, shown in Fig.

13. The two lines with two signal conductors have the same

characteristics as the line of Fig. 4, while the line with one

signal conductor has L = 494.6 nH/m and B = 62.8 pF/m.

All three lines are of the same length, 0.3048 m. Again, the

first network is the same as the one in Fig. 5, while for the

other two networks we have

[

lo–loo
o 0 –1

[P.1= : ! o -1 0 1



906 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MIT-3s, NO. 10, OCTOBER 1987

\ v w)
(

1

0.411

n. 2D ,

t h’>

.~.—..

o E -9

-0.20

I

(a)

n. 0s I

t h)

.~—.

E -9

-a. 04

t

(b)

Fig. 12. Voltages for the system of Fig, 11: (a) — Vl, –--– U3, —-— u,, and — - Vll; (b) — Oz,–--– z4, —-— V8, and — .— U12.
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Fig. 14. Voltages for the system of Fig. 13: — Vl, —-— V2, —--— VJ, — “— v4, — — UT, and ‘–V8.

The voltages at the transmission line ends are plotted in

Fig. 14. The wave first propagates down the first line (the

dominant voltage is at the driven conductor); then it gets

separated along the upper conductor of the second line

and along the third line. The voltages along these two

paths are almost the same (except for a small influence of

the lower conductor of the second line), and they arrive

almost coincidently to the third network. The voltage at

the upper conductor of the second line practically does not

get reflected, because it sees a well-matched termination,

while the third line excites the lower conductor of the

second line. This excited wave travels back along the

second line and excites the lower conductor of the first

line. Again, this wave sees a reasonably good termination

at the first network, so that the system response dies out

pretty fast.

VI. CONCLUSIONS

A computer-oriented technique for evaluating the time-

domain response of a system consisting of a number of

arbitrarily interconnected lossy multiconductor transmis-

sion lines was presented. The technique can be applied

even on personal computers to obtain waveforms propa-

gated along systems with line branching and loops, which

can be of particular value in the design of printed-circuit

interconnections of fast digital computers. A few examples

were presented illustrating this technique and demonstrat-

ing wave reflections, distortions, and cross talk.
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